Simple As Possible \qquad Computers Chandradeep Dey

G Namratha Reddy

Part 1
Boolean Algebras

Part 1
A Boolean Algebra $B=(B, \cup$, $\Pi, \neg, 0,1)$ is a distributive lattice B with top and bot...

Part 1
A Boolean Algebra $B=(B, U$,

Boolean Algebra - Olga booga monkey version true

Boolean Algebra - Olga boga monkey version
true
FALSE

Boolean Algebra - Olga boga monkey version true
FALSE
$O R(V)$
$\operatorname{AND}(\Lambda)$

$$
\operatorname{NOT}(\rightarrow)
$$

Digital Logic
NOT GATE

A	\bar{A}	
0	1	
1	0	
Truth-table		

Digital Logic AND GATE

A	B	$A \wedge B$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
Truth-table			

$$
7408
$$

Universal Gate

WAND GATE

A	B	$A \wedge B$	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
Truth-table			

Universal Gate
NOT GATE

A	\bar{A}
0	1
1	0

Truth -table

Universal Gate

AND GATE

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Truth -table

Universal Gate

More stuff
NOR gate -

More stuff
NOR gate* -

* Also universal.

More stuff
NOR gate* -

* Also universal.

Exclusive -OR $(X O R)$ gate - $\Rightarrow)$

$$
A \oplus B=\bar{A} B+A \bar{B}
$$

More stuff

* Also universal.

Exclusive - OR (XOR) gate $-\infty$
$A \oplus B=\begin{array}{ll}7402 \\ 7986\end{array}$

Combinational Circuits

Full Adder

A	B	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

$$
\begin{aligned}
& S=A \oplus B \oplus C_{\text {in }} \\
& C_{\text {out }}=A B+A C_{\text {in }}+B C_{\text {in }}
\end{aligned}
$$

Full Adder
sum of products expression in canonical form:

$$
\begin{aligned}
& S= \\
& C_{\text {out }}=
\end{aligned}
$$

Full Adder
sum of products expression in canonical form:

$$
\begin{aligned}
& S=\overline{A B} \overline{C_{\text {in }}}+\overline{A B} C_{\text {in }}+\bar{A} B \bar{C}_{\text {in }}+A B C_{\text {in }} \\
& C_{\text {out }}=A B \overline{C_{\text {in }}}+\bar{A} \bar{B} C_{\text {in }}+\bar{A} B C_{\text {in }}+A B C_{\text {in }}
\end{aligned}
$$

Half Adder

$$
\begin{aligned}
& S=\overline{A B}+\overline{A B} \\
& C_{\text {out }}=A B
\end{aligned}
$$

Boolean functions -

Multiplexers /
Data Selectors

Decoders

Puts a 1 at the output corresponding to the input combination and O everywhere else.

Decoders

$\lambda_{a_{n}} \operatorname{lenx}_{n x} \quad$ Gray Code
$\frac{\text { Gray Code }}{B_{2} \quad B_{1} \quad B_{0}}$

B_{2}	B_{1}	B_{0}	Decimal	G_{L}	G_{1}	G_{0}
0	0	0	0	0	0	0
0	0	1	1	0	0	1
0	1	0	2	0	1	1
0	1	1	3	0	1	0
1	0	0	4	1	1	0
1	0	1	5	1	1	1
1	1	0	6	1	0	1
1	1	1	7	1	0	0

Gray Code

- One bit changes on every step

a_{L}	a_{1}	a_{0}
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Gray Code

- One bit changes on every step
- usage in -
error correction

a_{L}	a_{1}	a_{0}
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Gray Code

- One bit changes on
every step every step
- usage in -- error correction - circuit minimisation

a_{2}	a_{1}	a_{0}
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

Gray Code

- One bit changes on every step
- usage in -
error correction
- circuit minimisation

G_{L}	G_{1}	G_{0}
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

- arithmetic? coding theory? information theory?

Gray Code

- Binary-to-Gray	G_{L}	G_{1}	G_{0}
	0	0	0
$G_{n}=B_{n}$	0	0	1
$\forall 1 \leq i \leq n \cdot G_{i-1}=B_{i} \oplus B_{i-1}$	0	1	1
	1	1	0
	1	1	1
	1	0	1
		0	0

Gray Code

$$
\begin{array}{cccc}
\text { Gray-to- Binary } & G_{L} & G_{1} & G_{0} \\
B_{n}=G_{n} & 0 & 0 & 0 \\
& 0 & 1 & 1 \\
\forall 1 \leq i \leq n, B_{i-1}=B_{i} \oplus G_{i-1} & 1 & 1 & 0 \\
& 1 & 1 & 1 \\
& 1 & 0 & 1 \\
& 1 & 0 & 0
\end{array}
$$

Gray Code

- Gray-to-Binary

$$
\begin{gathered}
B_{n}=G_{n} \\
\forall 1 \leq i \leq n \cdot B_{i-1}=B_{i} \oplus G_{i-1}
\end{gathered}
$$

a_{2}	a_{1}	a_{0}
0	0	0
0	0	1
0	1	1
0	1	0
1	1	0
1	1	1
1	0	1
1	0	0

More stuff

- Subtractors
- 2's complement code.

Subtraction using addition circuitry.

- Comparators
- Multipliers
- Demultiplexers
- Encoders

Sequential Circuits

Blasphemy
TRIGGER WARNING For math people

Blasphemy

Latch/bistable multivibrator

Latch/bistable multivibrator

- latches onto a value

Latch/bistable multivibrator

- latches onto a value
- has two stable states

Set-Reset $(S R)$ latch

Set -Reset (SR) latch

$$
\begin{array}{ccc}
\bar{S} & \bar{R} & \varphi_{\text {next }} \\
1 & 1 & 9 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & \text { undefined }
\end{array}
$$

JK latch - let's define the undefined

JK latch - how many flips?

JK latch - how many flips?

Level-triggering - Enable Input

Edge-triggering - Master-slave circuit

JK Flip-flop

JK Flip-flop

Note: Not the only way to achieve edge-trigating

$$
7476
$$

JK Flip-flop

JK Flip-flop

Preset and clear

JK Flip-flop

Preset and clear
Directly connects to the inner NAND gates to asynchronously set or reset the flip-flop.

More stuff
D Flip-flop

More stulf
D Flip-flop
$\therefore\left\{\begin{array}{ll}J & 9 \\ c k & \\ k & \overline{9}\end{array}\right]$ D $\Phi_{\text {neat }}$

T Flip-flop
 T $Q_{\text {hext }}$ O 9 $1 \bar{\varphi}$

Registers

Registers
-use fip-flops to store data

Registers

- use flip-flops to store data
- inputs/outputs can be serial/parallel

Registers (parallel- in/parallel-out)

Counters

Counters

- they count, duh.

Counters

- they count, duh.
-rather, they cycle through a sequence of states.

Counters (mod-4 counter)

Cycles through $00 \rightarrow 01 \rightarrow 10$

Counters
_can stop before $2^{n}-1$ and start after O.

- Use the outputs to create a term that denotes the number you want to stop at.
- feed the output of that term into appropriate presets and clears.

RAM
-bunch of memory cells arranged in a matrix.

- address decoders find out which row and column to read from/write to.

